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Pressure drops occurring in oscillatory viscous flows in wavy-walled tubes have been 
studied experimentally, for Reynolds numbers up to 1500 and Strouhal numbers in 
the range 0.005 to 0.02, and by numerical solution of the NavierStokes equations, 
for Reynolds numbers up to 200 and Strouhal numbers between 0.005 and 0.1. 
Agreement was good for values of the mean modulus of the pressure drop a t  lower 
Strouhal numbers and for values of the mean power dissipation a t  all Strouhal 
numbers. 

Numerical solutions have shown that the pressure drop may vary non-sinusoidally , 
even though the imposed variation in flow rate is sinusoidal. This cannot be 
explained by the nonlinearity of the steady pressure drop-flow rate relationship, and 
arises because the velocity field is not quasi-steady. In  particular energy may be 
stored in strong vortices formed during the acceleration phase of the flow cycle, and 
partially returned to the main flow later. The peak pressure drops in such flows, 
which are associated with the formation of these vortices, can be almost twice as 
large as values predicted by adding the appropriate quasi-steady and unsteady 
inertial contributions. This finding is important in the wider context of unsteady 
conduit flow. 

The dependences of the mean modulus of the pressure drop and the mean power 
dissipation on the Strouhal number and frequency parameter were investigated in 
detail numerically for two geometries. It was not possible to reduce either dependence 
to a function of a single parameter. The ‘equivalent ’ straight-walled tube for power 
dissipation was found to have a smaller bore than that for pressure drop, leading to 
smaller ‘phase angles’ than might have been expected at large values of the 
frequency parameter. This is because as the pressure drop becomes increasingly 
dominated by unsteady inertia, there remain relatively large recirculations in which 
energy is dissipated. 

1. Introduction 
In  membrane oxygenators, the resistance to gas transfer is due primarily to the 

resistance of the mass transfer boundary layer within the blood, rather than that of 
the membrane itself (Chang & Mockros 1971). This has meant that transfer rates 
have been enhanced significantly by inducing stirring motions in the flowing blood, 
and a successful design has been that of Bellhouse et al. (1973), utilizing pulsatile 
flows across furrowed membranes. The fluid mechanics of these devices has been the 
subject of a number of studies (Bellhouse & Snuggs 1977; Sobey 1980 and 
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Stephanoff, Sobey & Bellhouse 1980). Similar flow patterns can occur in wavy-walled 
tubes (Ralph 1985, 1986), which are therefore likely to offer an alternative geometry 
to the furrowed channel. An important advantage of the axisymmetric design is that 
the blood conduits can be self-supporting, instead of requiring moulded backing 
plates, which are expensive to construct. One purpose of the present work is to 
supplement published details of wavy-walled-tube flow patterns with data on the 
unsteady pressure drops. The wider industrial importance of periodic flows in 
conjunction with non-uniform walls has recently been emphasized by Ghaddar et al. 
(1986). 

Numerical studies of related unsteady flows, in which solutions to the 
Navier-Stokes equations have been obtained by finite differences, have included 
those of Cheng, Clark & Robertson (1972) and Cheng, Robertson & Clark (1973), who 
studied flows near square occlusions in planar channels. Daly (1976) considered 
smooth axisymmetric stenoses, and Savvides & Gerrard (1984) predicted pressure 
drops in tubes with triangular corrugations of relatively small amplitude, 
representing arterial prostheses. 

The present work differs from those just cited in that results have been obtained 
both by experimental measurements and by finite-difference solution of the 
governing equations, giving greater confidence in accuracy where the agreement is 
good. In addition, a wider range of flow parameters is covered than previously, and 
an attempt has been made to understand in detail the underlying physical processes. 
The content of the paper is as follows. The formulation of the problem and the 
method of calculation of the pressure drop are given briefiy in $2, where the 
experimental methods are also described. In $3, the variations of the pressure drop 
with time in typical flows are discussed, whilst in $4 the variation of the mean 
modulus of the pressure drop is given as a function of the governing parameters. $ 5  
deals with power dissipation and the phase relationship between the pressure drop 
and the flow rate, and conclusions are offered in $6. 

2. Numerical and experimental methods 
2.1. Formulation and computation of pressure drop 

The formulation of the problem and numerical methods of solution are given 
elsewhere (Ralph 1985, 1986). Only the relevant definitions are repeated here, and 
the method of computing the pressure drop described. The flow is governed by a 
Strouhal number St and a frequency parameter a2 defined by 

and 

4 ,  
St = 7 

UO 

where d is the radius of the tube at the cross-section of smallest area, fA is the 
frequency of the time-variation in flow rate, 5 is the kinematic viscosity and 8, is a 
reference velocity. (Note that dimensional quantities are denoted throughout by 
carets.) o0 is given by 

Qo 0, = G’ (3) 
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where Qo is the maximum volumetric flow. The flow rate Q is sinusoidally varying with 
zero mean, so that 44 

Q = Qo sin2njt, (4) 

where ;is the dimensional time. The dimensionless time t is defined as We note that 
the ratio o12/St = 8,d / ; ,  represents the Reynolds number a t  peak flow, and will be 
denoted by Re,. The tube wall is axially periodic in shape, and is specified by the 
equation for the radius over a single wavelength : 

P,=d 1+- l-cos- , { ;( Z)} (5 )  

where $ is the axial coordinate and iW($) the local tube radius. D and L are 
dimensionless geometrical parameters which take the values L = 10 and D = 2 
throughout. 

The pressure 1; is made dimensionless according to 1; = p b o i ,  where 1 is the fluid 
density. The axial pressure gradient can be expressed in terms of the vorticity field, 
and a finite-difference form of this expression was integrated numerically (using 
Simpson’s rule) to obtain the pressure drop ApL between points on the wall separated 
by an axial distance dL. The flow, and hence also the radial pressure gradient, are 
assumed to be axially periodic with wavelength dL, and thus ApL represents the 
unique pressure drop per wall wavelength for all radial positions. 

2.2. Experimental method 

A wavy-walled tube was constructed in two pieces, each formed by pressing a 
stainless-steel mould, with a minimum diameter of 2 mm, into heat softened Perspex 
blocks. In order to guarantee uniformity of the cross-sections of minimum area, the 
diameter of the constrictions was enlarged by 0.1 mm, using a long drill of 2.1 mm 
diameter, and hence the wall shape was not precisely sinusoidal, but contained very 
short straight sections a t  the constrictions. The dimensionless geometric parameters 
were L = 10 and D = 2 (to within about 5%). The overall length of the model was 
230 mm, with thirteen complete wavelengths and a 50 mm section of uniform 2.1 mm 
bore pipe a t  each end. Pressure tappings of 0.5 mm bore were drilled at the points of 
greatest cross-sectional area of the 2nd, 5th, 7th, 9th and 12th wavelengths. 

Solutions of glycerol a t  concentrations in the range 0-78 % by weight were used for 
the working fluid, and dynamic viscosities in the approximate range 1-50 CP were 
thereby obtained. Viscosity was measured using a rotary viscometer (Brookfield 
Synchro-Lectric LVT model with UL adapter), and repeat measurements were made 
frequently during a series of experiments. Comparison of measured viscosities with 
tabulated values, under standard conditions, showed the measurements to be 
accurate to within about 3%.  

Oscillatory flows at frequencies between 2 and 10Hz were produced using an 
adjustable-stroke Scotch-yoke mechanism driven by an electric motor (both a 
Parvalux 125 W shunt motor and an Eberhard-Bauer 115 W induction motor were 
used). The modified plunger and barrel of a ‘Hamilton’ gas chromatography syringe 
of 1 ml total volume (Perkin-Elmer) were used as a piston and cylinder to drive the 
flow, because of their excellent sealing properties and the small, accurately graduated 
volume of the barrel. Rigid piping connected the piston to the test section, whose other 
end was connected to a reservoir vented to the atmosphere. Flow contractions were 
incorporated a t  both ends of the test section. Instantaneous pressure differences were 
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measured by means of a piezoelectric differential pressure transducer (Kistler type 
500). The output voltage was recorded using an Arrow LSI-11 computer with ADC- 
11 analogue-to-digital converter (ADC) and PRTC- 11 programmable real-time clock. 
The linearity of the transducer and charge amplifier was calibrated against variable 
static heads of water and mercury, and dynamically calibrated in measurements of 
pressure drops in oscillating straight-walled tube flows. The range of peak-to-peak 
pressure differences to be measured was about 2 to 50 cm of water, and the charge 
amplifier sensitivity was adjusted so that peak-to-peak voltages were always about 
10 V. The resolution of the ADC was about 5 mV. 

The pressure tappings a t  the 2nd and 12th hollows were used throughout. 
Entrance effects had been shown to be negligible when these tappings were used in 
steady-flow experiments, provided the flow remained laminar (Ralph 1987), this is 
also expected to be true in oscillatory-flow experiments. Pressure tappings were 
connected to the transducer by short lengths of small-bore PVC tubing in which 
pressure waves would be expected to propagate at a finite rate. However, the 
estimated propagation times were much smaller than the imposed periods of 
oscillation and, in experiments in which the lengths of the connections were increased 
by factors of 2 and 3, no measurable effects on the phase angle between pressure drop 
and flow resulted. 

Frequency was measured, to an accuracy of 1 ms, using a magnet mounted on the 
Scotch-yoke flywheel and a Hall-effect switch attached to the baseplate. The magnet 
also provided a reference phase position for the calculation of power dissipation. 200 
pressure difference samples were taken during each cycle of oscillation, and samples 
were taken from two complete consecutive cycles in order to eliminate the effect of 
transducer ‘drift ’. The resulting data values were converted to dimensionless form 
and used to compute certain global measures of the pressure drop. 

3. Numerical predictions of the variation of the pressure drop with time 
In figure 1 ,  the computed dimensionless pressure drop ApL is shown as a function 

of time for four pairs of values of Re,, and St. It is striking that all the figures show 
departures from sinusoidal form, even though the flow rate varies sinusoidally. 
Specifically, in figure I (a) there are marked points of inflexion where the magnitude 
of the pressure drop is increasing, near the times t = 0.1 and t = 0.6; in figure 1 (b )  
these inflexion points have become subsidiary turning points and there are strong 
additional points of inflexion near the times t = 0.35 and t = 0.85; in figure 1 ( c )  there 
are points of inflexion where the magnitude of the pressure drop is decreasing ; and 
in figure 1 ( d )  there is a marked inflexion point at t w 0.15, but no corresponding 
feature in the second half o i  the flow cycle. The Strouhal-number range represented 
in these figures is 0.01 to  0.035, which corresponds approximately to that utilized in 
the oxygenators of Bellhouse et al. (1973), and it is of considerable interest to 
examine the reasons for these forms of time-variation in pressure drop. 

An estimate of the component of the pressure gradient arising from inertial effects, 
d$,/d%, can be obtained by a one-dimensional, inviscid analysis, whence 

where A^($) is the cross-sectional area of the tube. We can obtain an improved 
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FIGURE 1. Computed variation of the dimensionless pressure drop ApL with time: (a) Re, = 50, 

St = 0.01 ; ( b )  Re, = 200, St = 0.01 ; ( c )  Re, = 100, St = 0.02; (d )  Re, = 300, St = 0.035. 

estimate by allowing for the ‘added-mass’ effect due to the non-uniformity of the 
walls. Thus we can define AgU by 

to represent approximately the pressure-drop contribution directly attributable to 
the unsteadiness of the flow. The first term in (7) is the result of integrating (6), and 
the second term, which is not affected by the datum for f i I ,  represents the added-mass 
effect. If Apu = A$u/b8i ,  then using (6) and (7), and the definitions of $2 ,  we 

Substituting the values L = 10 and D = 2, and evaluating the integral in (8) 
approximately by numerical quadrature, we have 

Apu = 24.19~9 cos2nt. (9 )  
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FIGURE 2. Computed variation with time of: (a) Spl( t ) ;  ( b )  ApL(t)-Spl( t )  (dashed curve) and 
Apu(t) (solid curve); (c) ApL(t) -Apqs(t) (solid curve) and ApJ (dashed curve) ; (d) ApL(t)-Apqs(t)  
-Ap,(t)  (Re, = 200, St = 0.01). 

Since the contribution to the pressure drop represented by Ap,, varies sinusoidally, 
the remaining components must account for the non-sinusoidal waveforms of 
figure 1.  The non-sinusoidal variation may arise because the corresponding flows are 
distinctly non-quasi-steady (Ralph 1986) and because the steady (dimensional) 
pressure drop varies more rapidly than linearly with the flow rate over the range of 
Reynolds numbers encompassed by the flows (Ralph 1987). It remains, then, to 
determine the relative importance of the effects of non-quasi-steadiness and quasi- 
steady nonlinearity on the pressure drop. 

This question has been addressed in detail for the case of figure 1 (b ) .  A$qs = 
ApqsbOi is defined as the dimensional pressure drop corresponding to a steady flow 
at the same instantaneous flow rate (taken from Ralph 1987), and represents the 
pressure drop variation under the assumption of quasi-steady flow. If Ap, now 
denotes the dimensionless pressure drop in a steady flow at the peak Reynolds 
number, then &pl(t) ,  defined by 

&pl(t)  = Apqs(t) -Aps sin 2at, (10) 
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FIGURE 3. Computed instantaneous streamlines for a flow with Re, = 200, St = 0.01 : 

(a )  t = 0.05; ( b )  0.15; (c) 0.25; ( d )  0.45. 

is a measure of the effect of quasi-steady nonlinearity on the pressure drop. A plot 
of 8pl(t) is given in figure 2(a ) ,  and it can be seen that there are six turning points 
per cycle, but that the amplitude is rather small compared with the overall 
amplitude of ApL. The quantity [ApL(t) - 8pl(t)] represents a hypothetical pressure 
drop from which the effect of nonlinearity has been subtracted, and is plotted in 
figure 2(b)  (dashed curve). Also plotted in this figure is the actual pressure drop 
ApL(t)  (solid curve), and the close correspondence of the two curves indicates that the 
direct effect of nonlinearity is small. 

Figure 2 (c )  shows [ApL(t) - Apqs(t)] (solid curve), representing the components of 
pressure drop ascribable to the unsteadiness of the motion, and Ap,(t) (dashed 
curve), given by (9). The differences between these curves show that there is a 
considerable contribution to the pressure drop which cannot be attributed either to 
quasi-steady effects or, directly, to the unsteadiness of the flow. The outstanding 
component, [ApL(t)-Apqs-Apu(t)], which is shown in figure 2 ( d ) ,  can only arise 
because the velocity field is distinctly non-quasi-steady, and we seek to explain its 
time-variation by considering changes in the velocity field over a half-cycle of the 
flow. 

Flows similar to that corresponding to figures 1 (b)  and 2 are described in detail in 
Sobey (1980) and Ralph (1986). For ease of reference, the principal non-quasi-steady 
features are shown in figure 3,  these being the growth of the separation region during 
mean-flow deceleration (figure 3c, d ) ,  and the erosion of an ejected vortex following 
a change in the direction of the mean flow (figure 3a,b).  In  addition, there are 
secondary separations, which would not occur quasi-steadily. Most importantly, 
however, the instantaneous vortex strength, as measured by the maximum value of 
the stream function minus its value at  the wall, is much greater a t  times close to that 
of peak flow than would occur in a quasi-steady flow. For example, a t  t = 0.25 (and 
t = 0.75) the vortex strength is about five times as great as in a steady flow a t  the 
peak Reynolds number. Creation of a strong vortex is associated with significant 
energy production, and hence a significant pressure drop, and this leads to the 
pronounced turning points in figure 2 ( d )  at times close to t = 0.25 and t = 0.75, when 
the magnitude of the pressure drop is somewhat greater than would otherwise be 
expected. For t between about 0.3 and 0.5 and between 0.8 and 1.0, the sign of 
(ApL-Apqs-Ap,) is such as to indicate a component of pressure recovery, and 
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during these times the vortex strength remains much greater than quasi-steady. 
Thus, over part of the cycle the vortex acts rather like a flywheel, storing energy as 
the mean flow accelerates, and returning some of this energy during the subsequent 
deceleration, A t  t = 0.5 and t = 1.0 the flow direction changes, and the persistence of 
the vortex near the centreline leads to greater pressure drops than would otherwise 
be expected, This is because the vortex acts to obstruct the main flow, forcing it into 
a narrow region near the wall and causing large viscous pressure drops. The turning 
points near t = 0.1 and t = 0.6 arise because the obstruction effect of a decaying 
vortex diminishes before the energy-storage effect of a new vortex becomes 
significant. Finally, we note the existence of a pair of turning points close to each of 
t = 0.3 and t = 0.8 in figure 2 ( d ) ,  which can perhaps be related to changes in the forms 
of the secondary separation regions close to these times. 

For figure 1 (a ,  c ) ,  the flow patterns show similar features to those of figure 3. 
Differences in the pressure-drop waveforms arise because the relative magnitudes of 
the components of the pressure drop differ. Thus, in figure 1 (a ) ,  the direct effect of 
unsteadiness is the same as in figure 1 (b ) ,  but the corresponding flow patterns are 
more nearly quasi-steady in the former case. In  addition, the contribution to the 
pressure drop due to viscous drag is greater a t  all times. In  figure 1 ( c ) ,  the amplitude 
of the acceleration contribution is larger, and hence each overall maximum is 
advanced in phase. 

Figure 1 ( d )  shows a rather special case, examined in detail in Ralph (1986), in which 
the flow is time-asymmetric: this is reflected in the pressure-drop waveform, with 
ApL(t) a t  any time t not simply equal to -ApL(t-0.5), as is the case for the time- 
symmetric flows. Note, however, that the mean value of ApL with respect to t 
remains negligible compared with its peak value : this is not a trivial result since the 
time-asymmetry of the flow is considerable, and the pressure drop is not directly 
constrained by the boundary conditions. 

If the Strouhal number is increased further to values of about 0.05, the pressure- 
drop waveforms revert to closely sinusoidal form. This is because of both the 
increasing dominance of the direct effect of unsteadiness, and the decrease in the non- 
sinusoidal contribution due to non-quasi-steady flow patterns : this latter effect 
occurs because the shortened timescale of the oscillations leads to flows in which 
rapid variations in vortex strength do not occur. The effect of very low Strouhal 
numbers on pressure drop has not been investigated in detail here, but the results of 
Sobey (1983) and Ralph (1985) describing the relevant flow patterns indicate that 
the variation would be quasi-steady. 

4. Variation of the pressure drop with the flow parameters 
4.1. Comparison between numerical and experimental results 

The pressure-drop waveforms obtained experimentally were affected by ‘noise ’ to 
a varying degree, so that no attempt was made to compare instantaneous measured 
and predicted values of the pressure drop. Instead, values of (lApLl), the time-mean 
of the modulus of the pressure drop, were computed from the numerical and 
experimental results, and these values compared for a range of Reynolds numbers 
and Strouhal numbers. The results are shown in figure 4. 

The agreement is seen to be better a t  lower Strouhal numbers, with typical errors 
being 5% or less in figure 4(a) (8t = 0.005) but up to 20% in figure 4 ( d )  (8t = 0.02). 
This is because a t  high Strouhal numbers the stroke lengths were relatively short and 
at high Reynolds numbers the viscosities relatively low, leading to small dimensional 
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FIQURE 4. Comparison of numerical and experimental values of (IAp,I) : (a)  St = 0.005 ; ( b )  0.008 ; 
(c) 0.01 ; (d) 0.02. Curves denote numerical results, geometrical symbols show experimental 
data. 

pressure drops. A feature of the experimental pressure-drop waveforms of small 
dimensional amplitude was the occurrence of a large 'spike' close to each instant of 
flow reversal. This was due to unevenness in the running of the Scotch-yoke 
mechanism, which, despite considerable efforts, it proved impossible to eliminate, 
and which led to large accelerations and hence relatively large pressure drops. Thus, 
for the small-pressure-drop flows, ( IApLI) was systematically overestimated. 
However, calculations of the mean power dissipation in $5 show much improved 
agreement between experiment and prediction because the pressure ' spike ', 
occurring as it does when the flow rate is very small, makes negligible contribution 
to the power dissipation. Thus the numerical results can be accepted with confidence 
over a greater range of flow parameters than might be suggested by figure 4. 

The question of the degree of confidence that can be placed in those experimental 
results beyond the Reynolds-number range of the computations also requires 
discussion. It has been found that a 'transition-length' effect begins to affect 
pressure-drop measurements in steady flow ; that is, the flow becomes turbulent some 
distance downstream of the inlet to the wavy-walled section of the tube, when the 
Reynolds number exceeds values of about 300 (Ralph 1987). However, since even for 
the lowest Strouhal numbers considered here typical fluid particles travel a 
maximum distance of about 2 tube wavelengths in a cycle, it  is suggested that this 
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certain dashed curves denote analytic results for straight-walled tubes: with bore equal to the 
minimum wavy-walled tube bore (--); with bore equal to the volume-averaged wavy walled 
tube bore (--. .-). 

transition-length effect would be less important in oscillatory flow. Furthermore, the 
contribution to ( IApLI) from transitional effects is small until the Reynolds number 
exceeds 300 throughout a significant proportion of the flow cycle. Thus, it seems 
unlikely that the experimental error in the measurement of (IApLI) is greatly 
different when the Reynolds number is larger than the numerical limit of 200 than 
when it is smaller than this value. 

4.2. Further discussion of numerical results 

Standard texts on fluid mechanics give the relationship between pressure drop and 
flow rate for oscillatory flows in straight-walled tubes (Schlichting 1979, for 
example). Using the present scheme of non-dimensionalization, it can be shown that 
for such tubes 

2 LSt 
(IAPLI) = -> 

IY I 
where y is defined by 

where 

This suggests that plotting the results for the wavy-walled tube in the form 
( IApL/)/St against a2 may collapse the data into a narrow region of the graph. Such 
a plot of the numerical results is given in figure 5, for Strouhal numbers in the range 
0.005-0.1, and for Reynolds numbers up to 200. It can be seen that the data are 
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contained within a widening band of the graph as a2 increases above about 
indicating that we have not obtained a single-parameter dependence : for example, 
when a2 = 1, ( (ApL( ) /S t  varies by a factor of about 2 as St varies between 0.005 and 
0.1. Other plots have been examined, including (IApLI) against a2 and (lApL() and 
(IAp,l)/St against Re,, but none has produced a better collapse of the data than 
figure 5 ,  and we conclude that it is not possible to obtain a simple single-parameter 
description of the mean-modulus pressure drop (although such a description was 
given by Savvides & Gerrard (1984), for a restricted range of values of Reynolds 
number and frequency parameter). The variation of <lApLl)/St with St a t  a fixed 
value of a2 must be a result of the strong dependence of the non-quasi-steadiness of 
the flow structure on St (or equivalently Re,) since the contribution to (IApLI) due 
to unsteady inertial effects, allowing for the added-mass effect, is proportional to St 
and the direct effect of nonlinearity was shown in $ 3  to be small. However, for the 
range of Strouhal numbers likely to be relevant in the design of membrane mass- 
transfer devices, that is about 0.005-0.02, the data of figure 5 collapse into a region 
with about 30 YO variation when a2 = 1. 

Also shown in figure 5 are the mean-modulus pressure drops in straight-walled 
tube flows, with (i) a straight-tube radius equal to the minimum radius of the wavy- 
walled tube and (ii) a straight-tube volume per unit length equal to the average 
volume per unit length of the wavy-walled tube. The pressure drops were made 
dimensionless such that the ratios of dimensional mean-modulus pressure drops 
would be given by ratios of the values of ( IApLl)/St on the figure (for flows with the 
same variation of dimensional volumetric flow rate). The straight-walled-tube values 
appear to bound the data for the wavy-walled tube, although the limits are widely 
separated. Finally, figure 5 also shows the variation of (IApLl)/St under the 
assumptions of a quasi-steady, linear variation in ApL, with values taken from the 
low-Reynolds-number steady-flow results of Ralph (1987). This line appears to be an 
approximate asymptote for small values of a2 
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5. Power dissipation and the phase relationship between pressure drop and 
flow rate 

The dimensional instantaneous rate of pressure dissipation per wall wavelength, 
PL(l), is given by 

PL(4 = Q(4 APL(4, (14) 

and the dimensionless equivalent is PL(t) : 

PL(t) = - PL - - ApL(t) sin2nt. 
Q " 6 2  

OP 0 

The time-mean value of PL will be denoted by (PL) .  
Figure 6 shows values of (P,) obtained from the same numerical and experimental 

data as are represented in figure 4. The agreement is seen to be very close for all 
Strouhal numbers, and represents a considerable improvement, in the higher- 
Strouhal-number cases, over figure 4, for the reason given in $4. There is evidence of 
a shallow minimum in ( P L )  with respect to Reynolds number a t  the lower Strouhal 
numbers and higher Reynolds numbers, and this is presumably due to the increasing 
turbulent energy dissipation. 

With some confidence in the accuracy of the numerical scheme, we proceed to 
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consider numerically a wider range of Strouhal numbers. For a straight-walled tube, 
it can be shown that 

where y is defined in (12) and 8 is a phase angle given by 

Thus, for the wavy-walled tube, numerical values of (PL)/St are plotted in figure 7 ,  
corresponding to the values of (IApLI) in figure 5. Furthermore, for the straight- 
walled tube, (11) and (16) show that 

and this equation has been used to define an angle, 8, for wavy-walled tube flows 
where I3 has a significance very similar to  that of a phase angle. Numerically 
computed values of I3 for the wavy-walled tube are shown in figure 8. (The definition 
of 0 may break down when the flow is nearly quasi-steady and the nonlinearity of the 
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FIGURE 8. Numerical estimates of 'phase angle' 13 for several values of St and a2: St = 0.005 (A);  
0.01 (0 ) ;  0.02 (V); 0.05 (+ ) ;  0.1 ( x  ). For explanation of dashed curves see figure 5. 

pressure drop - flow rate relation causes sharpening of the pressure-drop turning 
points. This occurred in three of the 10w-a~ computations giving calculated values of 
4(PL) / (~ ( IApLI ) )  greater than unity : in these cases, the phase difference was taken 
to be zero). Also shown on figures 7 and 8 are results for straight-walled tubes carrying 
flows with the same dimensional frequency and stroke volume, and with diameters 
equal to the minimum and volume-averaged diameters of the wavy-walled tube. 

Figure 7 shows that the power dissipation is an increasingly strong function of the 
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Strouhal number as a2 (or Re,) increases, and comparison with figure 5 shows that 
this is more true of (PL)  than of ( 1 A p L l ) .  It is also true that values of (PL) for large 
01, approach more closely (and even exceed in one case) the corresponding values for 
the smaller bore straight-walled tube, than to the (IApLI) results. This is because 
even a t  quite large values of a2 there are vortex motions and hence regions of high 
energy dissipation in a significant proportion of the wavy-walled-tube volume 
throughout most of the flow cycle. In  the straight-walled tube, on the other hand, 
energy dissipation is confined to an increasingly thin layer a t  the wall as a2 increases. 
It is notable that the case in which (PL) for the wavy-walled tube exceeds that for 
the smaller bore straight-walled tube corresponds to the calculated flow structure 
with the greatest vortex strength a t  instants of mean-flow reversal (Ralph 1986). 

The effects on the ‘phase angle ’ 0 of energy dissipation in vortices are seen to be 
marked. Thus, figure 8 shows that the phase angle often corresponds to that in a 
straight-walled tube whose bore is smaller than the minimum bore of the wavy- 
walled tube. The highest-Strouhal-number case does not appear to be approaching 
a limit of 90°, suggesting that a t  this Strouhal number, increasing a2 (and hence 
Re,) would lead to flows in which vortical dissipation remained important. An 
unexpected feature of figure 8 is that for a Strouhal number of 0.02, increasing u2 
from 2 to 4 results in a decrease in 8: this change in a2 corresponds to a dramatic 
increase in both the vortex strength and the time for which an ejected vortex persists 
a t  the centreline. Thus, there are significant increases in the pressure-drop 
contributions owing to both the blockage and energy-storage effects of non-quasi- 
steady vortices, and since these contributions are ‘in phase ’ with the flow, there is 
a reduction in the phase angle. 

6. Discussion and conclusions 
It has been shown that in oscillatory wavy-walled-tube flows, in which the flow 

rate varies sinusoidally with time, the pressure-drop variation may be distinctly non- 
sinusoidal. This effect is most marked when the mean-flow acceleration contribution 
to  the pressure drop is not dominant but the flow field is, nevertheless, non-quasi- 
steady. 

Simplified models of stenosis flows have been based on the assumption that the 
pressure drop can be represented as the sum of a quasi-steady part and a 
contribution to produce accelerations of the mean flow (Young & Tsai 1973 and 
Newman, Westerhof & Sipkema 1979). These models assume that the dimensionless 
peak pressure drop is given by a term dependent solely on the stenosis geometry, plus 
a term increasing with decreasing Reynolds number but independent of the 
frequency parameter. The inadequacy of these assumptions for wavy-walled-tube 
flows in the parameter regimes investigated in the current paper has already been 
demonstrated ($4). The point is further illustrated in figure 9, in which are plotted 
values of the ratios 

and 

(where the maxima are taken with respect to time), for several values of a2 and 
Re,. As Re, increases, it can be seen that R, and R, tend to increase, and that a 
maximum with respect to a2 develops, with a turning point where a2 is of order unity. 
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FIQURE 9. Computed variation of R, (unfilled symbols) and R, (filled symbols) with 2 for three 

Reynolds numbers: Re, = 50 (0, +); 100 (0, m); 200 (A, A). 

Thus there is strong dependence of the pressure drop on the frequency parameter, 
and it is also clear that the assumptions of the simple stenosis models would lead to 
the peak pressure drop being underestimated by almost 50% in some cases. 

It can be concluded, then, that for unsteady separating flows in which the 
nonlinear, inertial and unsteady terms of the Navier-Stokes equations are all 
important, the pressure drop can only be predicted with reasonable accuracy by 
allowing for the interaction of these terms in generating non-quasi-steady fluid 
motions. 
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